Mark schemes

Q1.

(a) $M1 + 3 C_2H_6$

M2 Zeolite/Aluminosilicate/Aluminium oxide

2

(b) Option B

1

(c) Alkenes

1

(d) M1 Initial volume $O_2 = 0.21 \times 1350 = 283.5$ (cm³)

Alternative route:

M1 Vol Air decreases by $6.5 \times 20 = 130$ cm³

M2 Volume of O₂ remaining = M1 - (6.5×20) = 153.5 cm³ $M2 = 1220 \text{ cm}^3$

M3 Volume of CO₂ formed = $20 \times 4 = 80 \text{ cm}^3$ M3 Vol CO₂ produced = $4 \times 20 = 80 \text{ cm}^3$

M4 Total volume of gas left = M2 + M3 + (0.79×1350) = 1300 cm³ *M4 Total Vol Air* + CO_2 = 1220 + 80 = 1300 cm³

4

(e) M1 Acid rain

M1 Allow damages (limestone) buildings or statues/death of aquatic organisms/air pollution

M2 CaO or CaCO₃

2

[10]

Q2.

(a) $C_4H_9COOH + NaHCO_3 \rightarrow C_4H_9COONa + CO_2 + H_2O$

1

(b)

CH₃CH₂CH(CH₃)COOH

1

(c) **M1**

M1 (CH₃)₂CHCH₂COOH

Or

M2 6:1:2:1 (Any order)

M2 Allow ECF for a 5 carbon carboxylic acid

2

(d) **M1**

M2

Adjacent C has no (non-equivalent) H attached (so no splitting/spin-spin coupling takes place)

M1 (CH₃)₂C(OH)COCH₃ or CH₃OC(CH₃)₂CHO

2

(e)

0 0 H-C-C-H H H	Scores M1 and M2	Allow M1 for	R-O-C- H
H ₃ C CH ₃	Scores M3 and M4	Allow M3 for	RCH₃
	Scores M5		This structure also scores M5 H ₃ C CH ₃ CH ₂ C CH ₂
¹³ C peaks	= 3	M6	Allow ECF from their M5 of C ₅ H ₁₀ O ₂

6 [12]

1

Q3.

(a) C=O

(b) Tick in the box for 7 ONLY

(c)

R—C— esters

Ignore acids

(d) M1 (Quartet) because neighbouring C has 3H

M2 (At δ = 4.1 ppm) because connected to single bonded O of ester or

M3 (Triplet) because neighbouring C has 2H

M4 (At δ = 1.26 ppm) because R₂CH₂ or RCH₃

M5

$$\begin{array}{c} -\operatorname{C} -\operatorname{O} -\operatorname{CH_2CH_3} \\ \parallel \\ \operatorname{O} \end{array}$$

Ignore use of integration

(e) H O | H C C C

(f) Cannot deduce splitting patterns of peaks (at about $\delta = 2.60$)

Or

No integration values

Allow

Peaks at δ = 2.60 and δ = 2.56 ppm overlap OR

spectrum at δ = 2.60 is second order

1

5

1

Q4.

This question is marked using Levels of Response. Refer to the Mark Scheme Instructions for Examiners for guidance.

	All stages are covered and each stage is generally correct and virtually	
Level 3	complete.	
5-6 marks	Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3	
	Covers at least 1 point for stage 1, 3 for stage 2 and 3 for stage 3.	
	All stages are covered but stage(s) may be incomplete or may contain inaccuracies	
	Covers at least 1 point for stage 1 stage 2 and stage 3.	
Level 2	OR	
3-4 marks	two stages are covered and are generally correct and virtually complete.	
	Covers at least 1 point for stage 1, and 3 for stage 2 or stage 3 OR 3 for stage 2 and 3 for stage 3	
	Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and 3.	
Level 1	Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete.	
1-2 marks	Answer includes isolated statements but these are not presented in a logical order.	
0 marks	Insufficient correct chemistry to gain a mark.	

Indicative Chemistry content

Stage 1: infrared

1a) (broad peak) at 3400 cm⁻¹ (any value from 3230-3550) indicates <u>OH in alcohols</u>

1b) peak at 1720 cm⁻¹ (any value from 1680-1750) indicates C=O

Stage 2: 1H nmr

- 2a) peak at 3.9 ppm integration 1 so 1 H-C-O AND quartet so adjacent to CH_3 (stated or shown)
- 2b) peak at 3.7 ppm integration 1 so **HO-C-(stated or shown)**
- 2c) peak at 2.1 ppm integration 3 so $\mathbf{H}_3\text{C-C=O}$ AND singlet so no adjacent H (stated or shown)
- 2d) peak at 1.2 ppm integration 3 so **H**₃C- AND doublet so adjacent to CH (stated or shown)
- 2e) sum of integration values = 8 Hence $C_4H_8O_2$

Stage 3: ¹³C nmr

- 3a) peak at 210 ppm C=O <u>aldehydes or ketones</u>
 3b) peak at 75 ppm C=O (alcohols, ethers or esters)
- 3c) peak at 25 ppm

3d) peak at 20 ppm

[6]